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Abstract-The problem of minimum compliance of solid plates is formulated in statical terms. It is shown that
a previously derived optimality condition is merely a stationary condition. Additional necessary conditions
for optimality that distinguish local minima from local maxima are derived from the second variation on the
compliance. Although designs which are local minima may exist, it is shown that an absolute minimum does
not. An example is presented for which both a local minimum and a local maximum are obtained.

I. INTRODUCTION
This paper treats the problem of minimal compliance design for thin elastic solid plates subject to
bending. The design variable is the thickness h, total volume is prescribed, and the compliance is
defined as the work done by the external loads. Since the compliance is the negative of the
potential energy, minimal compliance designs are maximum potential energy designs or
maximum stiffness designs [1,2]. For special loading conditions, the design for minimum
compliance admits alternative physical interpretations. If the loading is a concentrated force or a
uniform ring load applied to a circular plate, the compliance is proportional to the vertical
displacement at the point or circle of application of the load. Therefore, in this case, the designs
for minimal compliance and minimal elastic deflection at the point of application of the load are
identical. Similarly, if the applied loading consists of uniform pressure, the design for minimum
compliance is equivalent to the design for minimum average deflection.

Basing arguments on the principle of minimum potential energy, previous investigators [1-3]
have obtained necessary and sufficient conditions for the maximum stiffness design of sandwich
structures. These arguments, however, only lead to an extremal condition for the compliance
when solid structures are considered[2]. Since structural arguments alone can not distinguish a
local minimum from a saddle point or local maximum, it is necessay to resort to the methods of
the calculus of variations. The purpose of this paper is to further explore the criterion for minimal
compliance from the variational calculus point of view.

2. FORMULATION OF THE PROBLEM

Consider a thin solid circular plate whose thickness h is a function of the radial coordinate r.
The kinematic support conditions, applied pressure p(r) and ring loads P; acting over the circle
r = ri are prescribed. It is desired to determine the thickness distribution, subject to the condition
of prescribed volume, so that the work W done by the applied loads is minimized. If w(r) is the
deflection of the middle surface of the plate and Wi is the deflection at r = ri, W becomes

W = Ip(r)w(r)dA +211'+P;w;r;.

In terms of the specific stiffness S

the linear elastic response condition is

(I)

(2)

(3)

where K,., K6, Mr and M6 are the radial and cirCUmferential curvatures of the deflected middle
surface of the plate and bending moments, respectively, JI is Poisson's ratio and E is Young's
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modulus. In addition, the curvatures must satisfy the compatibility condition

(4)

while the moments and shear force Q must satisfy the equilibrium equations

d(rMr )fdr - Me = rQ
(5)

d(rQ)fdr= -rp - 2: Pj5(r - ri)r;
j

where 5 is the Dirac operator.
The admissible class [I of design variables S(r) is defined as follows: (a) the condition of

prescribed volume is met

Vo = JSrdr.

(b) S(r) is bounded and has, at most, a finite number of discontinuties

O::s S(r) < 00.

(6)

(7)

The design for minimum compliance entails minimizing W over all S(r) lying is [I.

Definition 1. The design S = S* is locally a minimum (maximum) design whenever S* E [I
and there exists a number E > 0 such that W(S*)::s (2:) W(S) for all neighboring designs S E g
satisfying maxiS - S*I ::s E.

Definition 2. The design S = S** is an absolute minimum design whenever W(S**)::s W(S)
for all other designs S E [I.

Static Formulation. On account of the principle of virtual work, (1) may be expressed

(8)

Now, let j,(, be the class of statically admissible bending moments (M,., Mil) where rMr is
continuous and meets the stress boundary conditions but Me is merely bounded. The static
formulation entails minimizing J over all S E [I and all (M,., Mil) E j,(,. In this case, the
definitions for local and absolute minima are the same as Def. 1and 2 with W replaced by J. The
equivalence between the two formulations is expressed in the following theorem.

Theorem It: Any admissible design S* which is local (absolute) minimum for W(J) is also a
local (absolute) minimum for J( W).

In view of the stated objective of finding local and absolute minima for W, it suffices to
consider the statical formulation.

3. NECESSARY CONDITIONS FOR OPTIMALITY

Let the design S* and bending moments (M~, M~) provide a local minimum of 1. The first
necessary condition for optimality is obtained by taking admissible infinitesimal variations 8S.;
Introduction of the constant Lagrangean multiplier - 3k-4 to (6) together with the vanishing of the
first variation furnishes

tThe proof of Theorem I is found in the Appendix.
¢It is unnecessary to consider variations in the moments, since they are known to provide the exact moments (M~, Mtl

corresponding to S*.
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for all 8S. Consequently the design must satisfy
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(9)

A second necessary condition for optimality is obtained from consideration of the following
admissible variations

r8M. ={ ur-

O

d+8)
, -Ur-d-8)

o

aSrsd-8
d-8<rsd
d<r<d+8
d+8srsb

(10)

where a is the inner edge of the plate (a = 0 for the full plate), b is the outer edge, d is an
arbitrary radius where S(d) ~ 0, and ~o, ~l and 8 are infinitesimal quantities. The effects of
variation (10) are depicted in Fig. 1. In view of (9) and the particular variation (10), the change in
compliance 8J becomes

(11)

where only lowest order quantities have been retained.
Since ~o and ~l are constants, let ~o = A~l' Evaluation of (11) furnishes

(12)

where S*, M~ and M~ are evaluated at r = d. Since 8J ~ 0 for all values A, the discrimant of the
quadratic expression in A must be non-positive, viz.

It is convenient to express (9) in the parametric form

(13)

M~ = -S*2k-2csc 2ao sin (a - ao)
M~ = S*2k-2csc 2ao sin (a +ao)

(14)

1T /4 s ao s 1T /3.

In (14), the constant ao may be interpreted as a material parameter corresponding to the range

M

(a)

d-6 d dt6

Sl~[__/St6S, -,
, I

(b) L----t--- S

'-----

I

Fig. I. Ellectofvariation (10). Stress variation (a) and design variation (b).
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05; V 5; 1/2. Substitution of (14) into (13) furnishes

Icos (a - ao)1 5; y'(2/3). (15)

The corresponding necessary conditions for J to be a local maximum, Icos (a - ao)l2: y'(2/3),
may be similarly derived from (12). The results of this section are summarized in Theorem 2.

Theorem 2: Given a design S* with corresponding bending moments (M~, M~). Then: (a)
necessary conditions for J to be a local minimum are that (14) and (15) are satisfied everywhere
that S does not vanish; (b) necessary conditions for J to be a local maximum are that (14) and
Icos (a ao)l2: y'(2/3) are satisfied everywhere that S does not vanish; (c) sufficient conditions
for J to be a saddle point are that (14) is satisfied and that Icos (a - ao)1 < y'(2/3) over part of the
plate and lcos (a - ao)1 > y'(2/3) over another part of the plate.

4. CONTINUITY CONDITIONS

Let the design S* with corresponding bending moments (M~, M~) be a local minimum for the
compliance J. Since (M~, M~) E .Jtl and S* E Y', it follows that M~ is continuous everywhere.
Moreover, continuity of Ke at locations of vanishing stiffness may be established by considering
variation (10) with go, gl and S infinitesimal. Routine calculations furnish Sf =

2[Ke(d-) - Ke(d +)]goSd. The result follows by noting that the sign of go is arbitrary. An alternative
approach is presented by Masur [4]. If S is discontinuous, then (3) shows that K, is also
discontinuous while (9) requires a discontinuity in M~.

Let a discontinuity in S* occur at r = c. Denote the left and right-hand limits of S* at c by S~

and S~, respectively. Also choose two radii Cl> C2, where c, < c < C2 such that c is the only
discontinuity in c, 5; r 5; C2. Now consider the following variationt

r8S = {~o
-1/0
o

(16)

The constants 1/0, 1/], (0 and (I are chosen so that both 8S and (8M" 8Me) are admissible and so
that the variations affect an infinitesimal change in the discontinuity circle from c to c + f (Fig.
2). Thus

1/lf = 1/o(c - Cl) = (S~ - S~)cf

(If= (o(c - CI) = f(Me+ - M~_).

~
: ---~------

(b) "
_----- ---- -~ '. - s, 6s

_of 1- --f--
(, C Ct€' C,2

Fig.2. Discontinuity variation (16). Stress variation (a) and design variation (b).

tThis particular variation was first introduced by Megarefs [5].

(17)
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In the region CI:5 r:5 C, the change in compliance 611 becomes

3 IC IC611 = - k4 5Sr dr +2 (K~8Mr +Kt5M8 )r dr
CI Ct

= [ -14(S~ - S!) +2Kt(Mt+ - Mt-) ]CE.

In the region C :5 r :5 C +E, the change in compliance 612 is
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(18)

612 = r+< [F(M~ +5M" Mt +8M8, S* +8S) - F(M~, Mt, S*)]r dr (19)

where

Recalling the effect of (16), the first term in the integrand of (19) is, to within terms of order E,

F(c-) which by virtue of (9) becomes S!/e. Similarly the second· term becomes s~/e, and
therefore

(20)

Since S* is an assumed minimum, 61 = 611+612~ O. On the other hand, a variation similar to (16)
which moves the discontinuity circle from C to C -E will produce compliance changes identical
to (18) and (20) except for sign. Consequently, it is necessary that 61 = 0, Le.

or equivalently,

S*(3 sin 2a - sin 2ao)I:~ = O. (21)

Equation (17) shows that although ~o and 110 are infinitesimal, both ~I and 111 are not. Since S*
is not neighboring the design S* +8S everywhere, it follows that S* may be a local minimum
even though (21) does not hold. What, however, has been established may be summarized as
follows:

Theorem 3: Continuity of S*(3 sin 2a - sin 2ao) is a necessary condition that S* with
corresponding bending moments (M~, Mt) is the smallest Oargest) local minimum (maximum)
for J.

Equation (21), together with continuity of Kt and M~ may be used to establish
Corollary l:t If S* is the smallest local minimum of J, then S* is continuous everywhere.

Discontinuities in a are permitted provided both

(22)

and S* vanishes at the circle of discontinuity. At such circles, K8 is bounded and continuous
although K, is infinite. Since (22) satisfies (15), the largest local maximum cannot have a
discontinuity.

5. EXAMPLE

With the aid of (6) and (14), equations (3) and (8) become

K,= S-lk-2 cos (a +ao)
J= k-4 VO•

(23)

(24)

tThe proof is algebraic and therefore omitted. For sandwich plates the corresponding theorem and corollary were
immediately duducible from the continuity of M~ and K~[61.
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Now consider the full plate with radius b and edge moments Mo applied to the outer edge.
Assume an isotropic state of stress which automatically satisfies (15). Equations (5), together
with the edge condition, furnish

M, = M8 = Mo a = 0

from which (9) furnishes

Substituting S into (6) yields

so that (24) provides

(25)

The curvatures (23) become

which satisfies compatibility (4). Consequently, the uniform design

(26)

satisfies all the necessary criterion for a local minimum.
Now consider the alternative design obtained by assuming that K, vanishes identically. Thus

a;::: 1Tf2- ao.

Substitution of (27) into (14) together with eqn (23) furnishes

M,;::: _S2k-2cot 2ao
M8 = S2k-2 csc 2ao.

Substitution of (28) into (4), and (29) into (5) furnishes, respectively,

S= cor
cos2ao -/I = -1/3.

The constants Co and k are obtained from (6) and the edge condition. Therefore

(27)

(28)

(29)

(30)

(31)

Since II = 1/3, it follows that ao = 54·74° and a = 35·26°. Finally, (24) furnishes the compliance

(31)

It may easily be shown that cos2 (a - ao) > 2/3 and consequently (30) satisfies the necessary
criterion for a local maximum. With /I = 113, the quotient of (31) and (25) becomes

Jmax 32
Jmin = 27'

(32)
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6. THE ABSOLUTE MINIMUM

In the preceding sections necessary criterion for the determination of the local minimum and
smallest local minimum were developed. It will now be shown that the compliance may be made
arbitrarily small.

Consider the full plate simply supported at its radius b. Suppose further that the loading is
unidirectional and does not contain a concentrated force at the center of the plate. Under these
conditions the shear will be non-positive and bounded. Let n be a large number and subdivide the
radius b into n equal increments of length 8.

n8 = b.

Define a quantity E by

so that E ~ 8.
Now choose the admissible stresses (Fig. 3b)

Mr=Mo= r Q(Od~
J(I+I)1l

i8 +E,:5 r :5(i +1)8

(33)

(34)

(35)

where (i =0,1, ... ,n -1), ~o=Eo =0 and Ei =Efor i 2!: 1. Continuity of rMr at r =is +E(i 2!: 1)
requires

where terms of O(n-3
) are omitted.

With the admissible stiffness (Fig. 3a)

(36)

is +Ei :5 r :5 (i + l)S
i8<r<i8+Ei (37)

the compliance J becomes

n-I (I+I)1l n-I (ill+<, g,2

J = 2(1- v) ~ Jill+<, Mrr dr +~ Jill ;3 r dr.

s

(0)

,,,"LuJ:
i Mr-Me

L- 6 Jfk- b

Fig. 3. Design for arbitrarily small compliance (a) and corresponding bending moments (b).

(38)
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The constant 1/ is not arbitrary; it must be chosen so that (6) is satisfied,

(39)

With (33) and (34), equation (39) becomes

so that
(40)

Finally, (33), (34) and (40) will reduce (38) to

J = O(n- I
)

which approaches zero as n ~ 00. Note that the limit design S

S = lim S(r, n)

becomes unbounded on every closed subinterval of [0, b], and consequently S is not contained in
y.

7. ASSOCIATED PLASTIC PLATE

In a recent paper[6] the complete equivalence between the elastic design for minimum
compliance and plastic design for minimum weight was established for sandwich structures
whose face sheets obey the yield condition

(41)

where lJ has the same value as Poisson's ratio of the corresponding elastic plate and Mo is the
yield moment. The relationship between these two designs will now be examined for solid plates.

Consider a rigid-perfectly plastic plate identical to the elastic plate of the previous sections.
The loading and support conditions are the same as for the elastic plate. For the yield condition
(41), it is desired to design the thickness for minimum volume while insuring safety against
incipient plastic collapse. Define the plastic stiffness Sp by

(42)

The problem may now be posed as follows: Minimize <I>

(43)

over all (M" Me) E .At. This is a standard "calculus of variations" problem.t
The Euler (extremal) equation is

(44)

The gradient (aSp/aMe, aSp/aM,) may be identified with the incipient curvature rates at

tThis is formally the same as the standard functional f F(y. y', r) dr. However, in the calculus of variations, y (i.e. M,) is
the design variable. A relative minimum is defined in terms of neighboring curves to y; thus 8y'(8M.) is not required to be
small. When Sp is the design variable, small variations 8Sp imply, through (41), that 8M, and 8M. are both also small. Atrue
local optimum, therefore, is equivalent to the "weak" optimum in variational calculus [8).
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collapse [7], and (44) becomes merely the compatibility condition (4). Thus the field equations for
the extremals of the plastic design are formally identical to those for the extremals of the elastic
design.

The second necessary condition for a local minimum (maximum) is the Legendre conditiont

(45)

When (41) is expressed parametrically by (14) (with k == 1), eqn (45) simplies to

Icos (a - ao)l:s; (~h/(2/3)

which is precisely the same necessary condition obtained above for elastic plates.
When discontinuities in M9 and Sp are considered, the necessary continuity conditions of

Wierstrass are applicable, namely

(46)

(47)

Equation (46) is equivalent to continuity in the curvature rate ](9' while (47)* is precisely the
same as for elastic design

Sp [3 sin 2a - sin 2ao]I:~ = o.

Therefore, Theorem 3 and Corollary 1§ are also valid for the plastic plate.
It is known that the plastic plate does not possess an absolute minimum[10, 11]. For example,

consider the admissible stresses of Fig. 3a. Then

J =Lb
rSp dr =%(i:E:>/i ry[2(1- II )]M,1I2 dr +%i:+E1

€/12r dr

= tY(n -112).

Finally, the sufficiency conditions for a local minimal are satisfaction of (44), the strict
inequality (45) and the Jacobi condition[8]. In view of the exceptionally strong established
correlation between the elastic and plastic problems, it is highly probable that these conditions
are also sufficient for the elastic design, although a proof is presently lacking.

8. CONCLUSION

It has been shown that the extremal condition (9) may lead to designs that are either local
minima or local maxima. Afurther necessary condition for a local minimum is derived from the
second variation and is given by (15). These results are completely compatible with the
investigation of Masur[2], but differ with the publications by Huang[l] and Shield[13] where (9)
is also presented as a sufficient condition.

Except for a strict proof of the sufficiency conditions for a local minimal compliance design,
the elastic design problem has been shown to be equivalent to the plastic design problem for the

tMr6z[9j appears to be the first to use this condition in plastic design.
tThis condition is established by Bolza[Sj by considering a variation in the standard problem for which 8y is small but 8y'

is large. Such variations are valid when y is the design variable but not when Sp is the design variable. Therefore such
variations are permissible in plastic design only when searching for the smallest Oargest) local minimum (maximum).

§The result that ~ must vanish at discontinuities appears to be new even though this condition has been used
before[l2, 13j. The investigators [12, 13] treated the full clamped plate obeying the Tresca condition and obtained a solution
by assuming M, =M. in the central region and M. = 0, M, <0 in the outer region. At the juncture, continuity of Mr together
with the yield condition resulted in Sp = 0 for their particular design.
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yield criterion (41). This result is also at variance with Huang's concluding remarks [I]. Huang
restricts the design variable S to be continuous and differentiable. The theory presented in this
paper shows that the least local minimum design is continuous (although it was not restricted to
be so) but is not differentiable at the jumps in a. Thus, the unnecessary restriction that S be
differentiable would show that even a local minimum would not exist for many problems; the
same would be true even for the simpler case of sandwich plates.

Due to the high non-linearity in the field equations for a local minimal design, the literature is
noticeable lacking with solutions for specific plate examples. To the author's knowledge,
Huang[l] worked the only published example (v = 1/3), although Freiberger and Tekinalp[14]
solved the same problem in plastic design (v = 1/2) a number of years earlier. It may be shown
that Huang's solution does indeed satisfy (15) and therefore satisfies the second necessary
condition for a minimum.

For many problems local maxima will not exist. Thus a discontinuity in a and (22) preclude
the possibility of a local maximum. Similarly, so will the isotropic condition (a = 0) at the center
of the plate. On the other hand, the condition Mr = 0, S¥-O at a free or supported edge of the plate
will preclude a local minimum design.

Finally, the result that the compliance may be made arbitrarily close to zero is, of course,
physically absurd. The designs corresponding to such compliances are admissible according to
present terminology; however, they flagrantly violate the thin plate assumption. A more realistic
approach would place a specific upper bound on S. An alternative approach might be to
reformulate the problem based on a thick plate theory.
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APPENDIX
Proof of Theorem I: Let S* be a local minimum for Wand let M~ and M~ be the

corresponding bending moments under the loads per) and Pi. Let S be any design in g which is
neighboring S*, and (M" Me) any bending moments in At. [Note (M" Me) is not necessarily
neighboring (M~, M~).] Then, according to the principle of minimum complimentary energy

while Dei. 1 and (8) furnishes

21TJ(S*; M~, M~) = W(S*):s W(S).

Comparison of (48) with (49) furnishes

(48)

(49)

(50)
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Next, it must be established that local minima of I are also local minima of W. Let S* now be
the local optimum of I, and (M~, M~) be the actual bending moments at optimality. Thus (50)
must be satisfied for all S neighboring S* in fI and all (Mn M,) lying.in At. Now choose (Mn M,)
to be those moments that are actually produced by the given loading on the design S, so that the
right-hand side of (50) becomes W(S)/2'1T. Equation (50) becomes

W(S*)/2'1T = I(S*; M~, M~):5 W(s )/2'1T

completing the proof of the theorem.


